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Abstract

During the 1980s, all Japanese automobile producers opened assembly plants in North Amer-

ica. Industry analysts and previous research claim that these transplants are more productive

than incumbent plants and that they produce with a substantially di�erent production process.

We compare the two production processes by estimating a model that allows for heterogeneity in

technology and productivity. We treat both types of heterogeneity as intrinsically unobservable.

In the model, plants choose technology before production starts. They condition subsequent

input decisions on this choice. Maximum likelihood estimation is used to estimate the uncondi-

tional distribution of the technology choice, output, and inputs. The model is applied to a sample

of automobile assembly plants. We control for capacity utilization, unobserved productivity dif-

ferences, and price e�ects. The results indicate that there exist two distinct technologies. In

particular, the more recent technology uses labor less intensively and it has a higher elasticity

of substitution between labor and capital. Hicks-neutral productivity growth is estimated to be

lower, while capital-biased (labor-saving) productivity growth is estimated signi�cantly higher,

for the new technology. Using the estimation results, we decompose industry-wide produc-

tivity growth in plant-level changes and composition e�ects, for both technologies separately.

Plant-level productivity growth is further decomposed to reveal the importance of capital-biased

productivity growth, increase in capital-labor ratio, and returns to scale.
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1 Introduction

By traditional measures, average productivity for the automobile industry has increased consid-

erably since the 1980s. This increase coincided with the opening of Japanese assembly plants in

North America. Because the number of vehicles produced per-worker in the Japanese transplants

exceeds that in plants owned by American producers, researchers have concluded that industry-wide

productivity increased because of the entry of more productive plants.

At the same time, it is claimed that the entrants produce with a di�erent technology,

dubbed lean, or modern, manufacturing. Lean production is associated with team work, less

automation, 
exible equipment, employee training, and increased 
ow in the production process.1

The existence of two di�erent technologies a�ects the evolution of productivity in the industry.

Plants producing with di�erent technologies will experience productivity growth at di�erent rates

and possibly di�erent factor-biases. Some researchers also argued that imitation of the transplants

by incumbent plants, has lead to additional productivity gains for the industry. The e�ect of these

two di�erent technologies on productivity measurement has not yet been addressed. Estimating

production functions with random coeÆcients, or for limited samples of similar �rms, has not

yielded satisfactory results either (see Griliches and Mairesse (1990)).

In this paper, we investigate the rate and bias of total factor productivity growth for both

technologies, taking the technology choice explicitly into account. Consistent with previous liter-

ature on automobiles production, heterogeneity in technology is explained by the existence of two

distinct systems of production: lean and traditional. Plants choose between these two systems, but

their technology choice is not directly observable to us.

The entry of Japanese transplants in the 1980s coincided with a large increase in vehicles

produced per-worker. However, concluding from this that the entrants are more productive and

that the labor productivity growth is driven by composition e�ects, is premature. Figure 1 plots

the evolution of the vehicles per-worker statistic. After 1982 the statistic is calculated separately

for plants already existing in 1982 and new plants. It suggests that the large increase is mostly

situated with old plants. This could be due to an acceleration of productivity growth in the

traditional technology, but it is equally possible that it represents old plants adopting the new

technology. Accounting for input substitution complicates matters further. Di�erences in the

factor-bias of productivity growth for the two technologies can also cause a di�erent evolution of

labor productivity. In order to make �rm conclusions about the evolution of productivity in the

industry and the underlying drivers, we have to disentangle the e�ects. In what follows, we will

mostly concern ourselves with total factor productivity. Using the estimation results, we decompose

the labor productivity evolution in the industry in di�erent components using the primitives of our

model.

Disentangling these e�ects is complicated by the basic unobservability of technology. Only

for recent years, do we observe the exact production activities carried out at each plant. In addition,

much of the variation between the two technologies is in the organization of work or the product


ow through the plant, both of which are hard to measure. Furthermore, the probability that a

1For example, many articles in the International Motor Vehicle Program (IMVP) have described in great detail

how Japanese plants di�er from their American and European competitors on several dimensions. The IMVP program

has generated 328 working papers since 1986. The book by Womack et al. (1990) presents several �ndings of the

program.
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Figure 1: Evolution of vehicles produced per-worker for new and old plants
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new plant chooses either technology is likely to vary across plants and over time. It is also likely

that some plants, built before the new technology became available, switched technology at some

later date. Therefore, we use an endogenous switching model of technology choice to investigate

production decisions conditional on the technology choice.

Estimating a production function for the automobile industry is also complicated by several

other factors that we control for. Large variations in capacity utilization distort the relationship

between measured input levels and the actual services a plant derives from them. Price setting power

makes de
ated sales or value added an inappropriate measure of output. Unobserved heterogeneity

in productivity levels leads to simultaneity bias, because plants choose inputs as well as output.

We estimate a separate production relation for lean and traditional producers, conditional

on technology choice. To this end we collected data on a sample of automobile assembly plants in

the United States. Input measures are obtained from the Longitudinal Research Data set (LRD),

from the U.S. Bureau of the Census. It provides reliable input statistics because all plants are legally

required to report the information. An advantage of the automobile industry is the existence of

a well-de�ned unit of output: a vehicle. We collected information on actual production volumes

to avoid using de
ated sales or value added as output measure. This allows us to control for

price e�ects and focus on actual production decisions. We also collected information to account

for variations in input use. Capacity utilization in this industry varies considerably over time and

among plants. We adjust for it by explicitly modeling the number of shifts a plant is operated.

Finally, we obtained data on factors that in
uence the attractiveness of each technology. These

include the type of vehicle assembled, ownership, and changeover dates.

Using a structural model of input choice and controlling for the choice of technology, we

obtain consistent estimates for the parameters in the production function and the technology deci-
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sion. We �nd the two estimated technologies to di�er signi�cantly. Ignoring them would bias the

interpretation of the structural parameters, such as the rate of productivity growth. The traditional

technology uses slightly more of both inputs and has constant returns to scale. The technology

that we identify as lean production, experiences decreasing returns to scale, but increasing returns

to shifts. The elasticity of substitution between capital and labor and the own-price elasticities

are signi�cantly larger for the lean technology. Both �ndings coincide with the notion that lean

manufacturing is more 
exible and relies less on standardization. The rate and bias of productivity

growth for each technology are identi�ed separately. Lean production is associated with a lower

rate of Hicks-neutral productivity growth and a signi�cantly higher rate of capital-biased, labor-

saving, productivity growth. Labor productivity growth for traditional producers is mainly driven

by increases in total factor productivity growth. For lean producers, capital-biased productivity

growth and an increase in capital per worker are the two most important contributors to labor

productivity growth.

We also �nd, not too surprisingly, that switching to lean technology has become more

likely over the years. This is potentially driven by the proliferation of models, produced in small

production runs. A technology switch is also more likely in changeover years, when switching costs

are lowered. Some observers speculated that entry of a new technology would lead to an increase

in productivity growth for mass producers, making them catch up with lean production. The

results indicate that many mass producers have adopted lean production, instead of improving the

mass production technology. Decomposing industry-wide labor productivity growth illustrates the

importance of plant-level labor productivity growth by lean producers. It also shows that relocation

of resources from traditional to lean producers accounts for a signi�cant part of the observed growth

rate.

The next section provides an overview of how we consistently estimate both production

technologies. It also describes the timing of decisions and productivity shocks in the model. Section

3 contains a description of the data and motivates the existence and e�ect of two technologies. The

four di�erent stages of the model are described in more detail in section 4. Section 5 derives the

likelihood function and contains the estimation results. In section 6 we derive some conclusions

about the evolution of productivity growth in the industry.

2 Features of the model

2.1 Empirical strategy

A brief digression on the interpretation of a production function reveals many of the estimation

diÆculties. The technology a plant produces with |as captured by the production function|

is a relationship that determines the maximum output that can be obtained from a bundle of

physical inputs. Some plants will produce more output with the same amount of inputs. These

plants can still be considered to be producing with the same technology, if we allow for a di�erent

level of productivity. Input substitution possibilities are identical, but the production frontier is

shifted outward radially. In addition, technology can shift over time. A radial shift that a�ects all

inputs identically is called Hicks-neutral productivity growth. In this industry, it is often assumed

that a signi�cant part of technological progress comes through improved machinery and equipment:

capital-biased (or labor-saving) productivity growth. In order to measure the shape and shift of the
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production function we want to observe physical amounts for inputs and output and the individual

productivity level for a sample of plants that we know to produce with the same technology. Each

of these four elements |technology, productivity, output, and inputs| pose speci�c problems.

In order to compare productivity growth for the lean and traditional technology we need

to obtain consistent estimates of the parameters in each production function.2 Simply regressing

output on inputs is unlikely to produce this, because we do not observe the technology choice

directly. At one extreme we could postulate that all plants in our sample produce with the same

technology. All observed heterogeneity would then be attributed to measurement or sampling error.

At the other extreme we could assume a di�erent technology for each plant. This assumption would

render estimation nearly infeasible. In addition, Diamond et al. (1978) show that it is impossible

to identify the bias in productivity growth from the elasticity of substitution using only time-series

variation. We take an intermediate position by allowing two |but only two| technologies. Using

observable characteristics that determine the technology choice we predict the probability that a

plant produces with each technology.

The second piece of information that is intrinsically unobservable is the productivity level

of individual plants. Given that inputs as well as output are chosen by the plant we have a

source of simultaneity bias, making least squares estimation of the production relation inconsistent.

Instrumental variables are the traditional solution. Blundell and Bond (1998) demonstrate that in

the context of the production model, it is very hard to come up with powerful instruments. One

solution is to use a behavioral equation to obtain an expression for the unobserved productivity in

terms of observable variables. For example, Olley and Pakes (1995) invert the investment function

to substitute the productivity term from the production relation.

In order to identify both the technology choice process and the production functions, we

rely on distributional assumptions for the unobservable variables. These assumptions are critical

for the construction of the model and also dictate a maximum likelihood approach. We predict

the probability for each technology for each plant-year. The distribution of inputs and output will

depend on the technology a plant has chosen. In the maximum likelihood framework, we put both

together, to obtain the unconditional distribution of the endogenous variables.

Where possible, we collected data to measure physical output and inputs directly. Using

data on output quantities, shifts, and hours worked, we control for price e�ects and variations in

capacity utilization. Where physical inputs are unavailable we use stylized facts about the industry

to model input choice.

2.2 Timing

The equations in the model are derived in section 4, but we give an outline of the model here.

We will specify a production function, dependent on capital, labor, materials and shifts. We

observe plants choosing the exact number of shifts to operate a plant during the year. From the

production relation and optimal input choices, we derive three estimating equations, conditional

on technology. Two di�erent sets of coeÆcients are estimated, each representing one technology. A

2The level of productivity is only de�ned relative to a particular production function. Therefore we can only

compare the productivity level of plants that face the same technology. Productivity growth, on the other hand, is

always well-de�ned. It measures the shift of a production frontier over time. Productivity growth will be the focus

of our analysis.
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model of technology choice generates a predicted probability for each technology, which is used to

construct the likelihood function. Unobserved heterogeneity in productivity has two components,

one constant over time and one variable.

Figure 2 shows the time line of decisions and indicates when the errors are realized. The

�rst line describes decisions taken when the plant is built, before the current production year.

After some preliminary choices, that we do not consider explicitly, the plant makes a technology

choice (i), traditional or lean. The constant component of productivity (!j) is realized before any

production decision is made. It is known to the plant, but we do not observe it.

Figure 2: Timing of decisions and errors
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The second line describes the time line of events in each year. First, the plant has the option

of switching technology from traditional to lean. This decision is modeled using a reduced-form

approach. Then output (Q) is decided. We assume that a plant gets the production requirement

handed down from headquarters. It minimizes costs subject to the production constraint. The

second decision a plant makes is investment (I). Investment (and capital, (K)) is potentially a

function of the individual productivity level but not of any other random variable in the model.

Before the start of production, the plant learns the exact productivity of the capital stock (�k),

which determines the eÆciency units of capital (K̂) used in production. The optimal choice of

shifts (S) and labor (L), the third decision, generates the �rst estimating equation. At the same

time it provides us with an expression for capital productivity (�k) in terms of observable variables.

The fourth and �nal decision concerns actual production. Actual output (Q) will di�er

from planned output ( �Q), because of an ex-post shock to production (�q), realized after labor and

shifts are chosen. Finally, material input is proportional to the actual output produced. We do not

observe the volume of materials (M), only the value of materials (M̂). These are related by an index

that represents quality upgrading in components and includes a stochastic term (�m). Production

generates two additional estimating equations. The second equation we estimate relates output

to capital, labor, and shifts. The third equation is the relationship between material input and

output.

There are two sources of unobserved productivity di�erences in the production function. We

control for both to avoid simultaneity bias. The �rst component (!j) is assumed to be constant over

time. It is captured by plant-�xed e�ects. The second component (�k) is variable and represents
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a shock to capital productivity. Much of the productivity improvement in this industry is caused

by technological advances in machinery. We assume that a plant cannot predict this perfectly

when deciding investment. It chooses variable inputs after observing the actual productivity of the

capital stock. Using the optimality condition for the choice of variable inputs, we can express �k in

terms of observable variables. The only error term in the production function we do not observe

is a shock to production (�q) that makes the plant miss its planned output. We assume that this

random shock is realized after inputs are chosen and independent of both productivity components

and input levels.

The following table summarizes the primitives of the empirical model (i = L; T ).

decision equation errors

(1) i Pr(i = T ) ! reduced-form for technology choice

(2) K = g(!j ; :::) ! (not estimated)

(3) gi(
L
S
) = gl(w;K; t;�i) + �ki ! �ki = gi(

L
S
)� gl(:::)

(4a) Q = gq(S;L;K; t; �
k
i ; !j;�i) + �

q
i ! �ki from (3); !j is plant-�xed e�ect

�
q
i independent of inputs, �

k
i ; and !j

(4b) M̂ = gm(Q; t;�i) + �mi ! �mi realized at the very end

The technology decision (1) is used to derive the probability a plant produces with the traditional

technology in each year. The labor-shift decision (3), production (4a), and materials (4b) provide

the three estimating equations. The equations imply a distribution for each endogenous variable

conditional on technology. The likelihood function for the unconditional joint distribution is ob-

tained by multiplying the probability for each technology and the conditional distributions for the

three endogenous variables. We assume that the three error terms |�ki , �
q
i , �

m
i | are independently

distributed. In section 4 we describe the model in greater detail and we derive the equations ex-

plicitly. First, we introduce the data and motivate the existence and e�ect of two technologies in

the automobile industry.

3 Industry Characteristics

3.1 Data

From the preceding discussion it is clear that the data needed is threefold: variables characterizing

the technology choice, output quantities, and input levels, adjusted for intensity of use.

The principal data source is the Longitudinal Research Data set (LRD) constructed by the

Center for Economic Studies at the U.S. Bureau of the Census. The data is taken from plant

responses to the Annual Survey of Manufactures and the Census of Manufactures. Observations

are plant-years and plants are linked over time. Coverage includes all plants with SIC code 3711

(motor vehicles and car bodies) for their main products. The data spans the years 1963, 1967, and

1972-96.

Industry publications are used to supplement the LRD. These cover a smaller number of

companies and plants. Only statistics for plants owned and operated by one of the large automobile
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or truck companies are available. Omitted plants are owned by smaller �rms and specialize in

converting cars to limousines, trucks to campers or they only make car or truck bodies. In addition,

the LRD contains some engine or component plants that produce a large number of bodies or

completed vehicles only sporadically.3 74% of the observations in the LRD with SIC code 3711

could be matched to the data from other sources. These plants represent 94% of the employment

in the industry.

This data set provides reliable and complete input statistics. The labor input measure

we use is de�ned as total hours worked at the plant. Hours worked by non-production workers

are imputed using their relative wage. Unionization and volatility in production load make that

companies have a number of temporarily unemployed workers on their payroll. Only actual hours

worked are counted in labor input. The amount paid to temporarily unemployed workers is included

in the labor costs. Because we observe whether plants are unionized or not, we can account for this

in the empirical model. Capital input is constructed from book values. An alternative measure,

using the perpetual inventory method, yielded almost identical results. It is de
ated using the

capital goods de
ator for the industry from the NBER productivity data set. Material input

includes raw materials and intermediate products, fuels, and electricity. All are scaled by the

appropriate de
ator from the NBER data set. In principal, we could include energy separately in

the production function. This was not done because it is smaller than 1% of costs for almost all

plants and included in raw materials for some. Table 1 contains summary statistics for the relevant

variables.

The second piece of information needed is output. Most productivity studies use de
ated

sales or value added as output measure, because actual production volumes are not generally avail-

able. If a �rm has price setting power, price changes will erroneously be interpreted as productivity

changes. For example, if a �rm produces subject to an inelastic demand, it can increase sales by

raising the price. De
ation by an industry-wide price index does not capture these individual price

movements. Because output and inputs do not change |or even decrease| this increase in \out-

put" will be interpreted as a productivity gain. In a concentrated industry like automobile assembly,

price setting is likely to be important. One example is the sale of identical vehicles by di�erent

�rms. All American producers have joint-ventures with Japanese partners, assembling vehicles

jointly. Two identical products are sold under di�erent nameplates. The Japanese model invariable

fetches a higher price.4 We collected information on the number of cars and light trucks produced

by each plant. For the years 1985-1996 this data was obtained directly from Ward's Automotive.

For the preceding years two data sources in Ward's Automotive Yearbook are matched.5

The input and output statistics are augmented by variables that allow us to distinguish both

technologies. These include dummies for the type of vehicle produced and a dummy for Japanese

3Plants are classi�ed according to the industry category of their main product. Some engine or component plants

assemble a limited amount of vehicles as well, which in some years can make up a large part of sales. This can result

in these plants being classi�ed in SIC industry 3711 in some years.
4This price di�erence can be substantial. NUMMI, the joint-venture between GM and Toyota in Fremont, CA,

produces the Chevrolet Prizm and Toyota Corolla. Both models are identical, assembled from the same components

on the same assembly line. On average, the Prizm is sold for $3000 less than the Corolla, which is about 20%

of the average retail price. Some of this represents lower pro�ts for Chevrolet dealers, but most of it is a factory

rebate. Using de
ated sales or value added as output measure makes NUMMI look much more productive assembling

Corollas.
5Details about the calculations are available upon request. As a robustness check the calculated production for

1985 is compared with the information obtained directly. The correlation was a reassuring 0:99.
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Table 1: Summary statistics for the automobile assembly industry (1963,1967,1972-96)

variable mean standard deviation

Inputs:

total hours worked per-shift 22386 17562

total employment 4332 3133

production workers (% of total) 0.86 0.05

book value of capital (% of sales) .334 .293

materials-sales ratio 0.75 0.10

energy-sales ratio 0.006 0.004

Output:

cars produced 181780 92076

light trucks produced 130547 81637

total vehicles produced 196902 100177

Other variables:

only-cars dummy .57 .49

only-trucks dummy .23 .42

cars and trucks dummy .20 .40

Japanese ownership dummy .05 .22

changeover dummy .04 .18

annual capacity 237095 83904

shifts operated (per-year) 424 114

union dummy .97 .18

number of observations 1358

number of plants 78

number of �rms 17

Sources: Longitudinal Research Data set, Bureau of the Census, 2000; Ward's

Automotive; and Automotive News weekly magazine (various years).

ownership. A dummy for changeover years will be used as a proxy for switching costs.

Information on shifts is collected to account for capacity utilization. A major concern for

productivity measurement in this industry is the volatility in capacity utilization. The Harbour

report (1999) calculates assembly plant utilization rates for 1998, a record production year, between

34% and 148%.6 Even though most of the capital cost is sunk after it is installed, many plants

choose to remain idle for part of the year. The tradeo� a plant faces is to run few shifts, with many

workers on each, or run a lot of them, with fewer workers. The number of shifts to operate the plant

is an explicit choice the plant makes, resulting in endogenous variation in capacity utilization. From

Automotive News weekly magazine we obtained the number of weeks a plant ran overtime, worked

on Saturdays, and the number of weeks a plant closed for vacation, for inventory adjustment, and

for retooling and model changeover. Using these �ve measures the total number of shifts the plants

operated each year can be computed.

6Capacity utilization can exceed 100% since plants can run more than 2 shifts a day, 5 days a week, while capacity

is calculated for regular operation.
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3.2 Existence and e�ect of two technologies

As mentioned earlier, we do not observe the technology choice directly and assume there are two

types. The trade press takes this stance by drawing a sharp distinction between lean and mass

production. Milgrom and Roberts (1992) provide theoretical support for limiting the technologies

to only two types. They describe modern manufacturing as a set of activities that exhibit comple-

mentarities. The marginal product of adopting the new technology for one activity is increasing

in adoption on other dimensions. This makes intermediary systems that are composed of elements

from the traditional and modern systems unstable.

Figure 3 provides additional evidence for the existence of two technologies and the possibility

that plants switch between the two. The left panels plot non-parametric densities for the capital-

labor ratio for the �rst �ve years of the sample.7 The right panels plot the same graphs for the

last �ve years of the sample. The top panels contain the ratio for all plants and the bottom graphs

are limited to plants that remained in the sample for the entire sample period, from 1963 to 1996.

Comparing left and right panels, we see that the ratio has a bimodal distribution in both time

Figure 3: Non-parametric distribution for the average capital-labor ratio for di�erent groups of

plants
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periods. In the early years, most plants choose the low capital-labor technology, the left mode.

In later years, most plants prefer the technology with a higher capital-labor ratio, leading to an

increase in the right mode. In particular, this is true for the bottom panels, containing the same

plants in both periods. We interpret this as evidence of plants switching technology.

7These graphs can be interpreted as smoothed histograms. An observation is the average capital-labor ratio for

a plant over the relevant �ve year period. Con�dentiality considerations preclude us from reporting the underlying

statistics directly.
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We illustrate with an example that failure to control for the existence of di�erent technolo-

gies will bias productivity growth measures. Figure 4 plots the unit isoquants for two types of

technologies in input space. The producers with the technology that increased in popularity, the

new technology, have a steeper isoquant (the solid line), choosing a higher capital-labor ratio at the

same factor prices. Producers with the older technology face a di�erent tradeo� between labor and

capital, captured by the dashed line. If both types of plants are pooled, the estimated technology

will lie between the two existing ones and have the shape of the dotted line. Take a plant with

an initial production plan at P0 and a production plan P1 in some later year. Without knowledge

of the input tradeo� the technology allows, it is impossible to know the growth in total factor

productivity the plant experienced. We have to separate movement along the isoquant from the

shift in the function. If we estimate only one production function for the pooled sample, productiv-

ity growth will be underestimated for plants with the traditional technology. Actual productivity

growth is 2P1=02, although it is estimated to be 1P1=01. For producers with the new technology,

productivity growth is overestimated. It is actually zero, although it is estimated to be 1P1=01

as well. If we believe heterogeneity in technology to exist, we have to control for it to measure

productivity growth correctly.

Figure 4: The existence of two technologies will lead to biased measures of productivity growth.
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isoquant for the new technology:  TFPG = 0

isoquant for the traditional technology: TFPG = P12/02

estimated isoquant for pooled sample:  TFPG = P11/01

4 A Model of the Decision Process

Now we analyze the four decisions |technology choice, investment, variable inputs, and produc-

tion| in greater detail. Earlier choices take optimal decisions in later stages into account. Later
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choices are conditional on the outcomes of earlier decisions. We start with the last decision, produc-

tion, and work our way backwards. The production decision will yield two equations we estimate,

one for materials and one for output. Secondly, the choice of variable inputs will yield the third

equation. It also generates an expression for the capital productivity shock, needed to estimate the

production function consistently. Thirdly, we discuss the investment decision. Nothing is estimated

from this, but we derive three interesting properties. It also indicates that capital will be a function

of the constant component of productivity, but not of any other unobservable in our model. The

�rst three decisions are conditional on the fourth and �nal decision, technology choice. This is

modeled in a reduced-form way and used to construct the likelihood function.

4.1 Fourth decision: Production

Ideally we would like to observe the physical input of material in production. Knowledge about

the assembly activities carried out at each plant could be taken into account in the production

function, making sure it is a stable relationship. We only observe the value of material input,

which displays two important trends. The �rst observation is the large increase in (the value of)

materials per-vehicle over the sample period (PmM
Q

). At the same time the material-sales ratio

remained virtually constant (PmM
PqQ

).

Quality upgrading of vehicles, through higher quality components, provides one explanation

consistent with both observations. More recent cars use better fabric, better quality paint, more

powerful brakes, etc. The amount of intermediary inputs per-vehicle remained constant, but the

quality and (real) price increased over time. This is consistent with the observed increase in price

for the �nal product. The real price per-vehicle (in 1987 $) increasing from $6000 to $13000 over

our sample period.

An evolution in outsourcing activities provides an alternative explanation for the two styl-

ized facts. The use of more material inputs in the assembly process can explain the upward trend

in the material-vehicle ratio. In order to reconcile this with the constant material-sales ratio, the

price increase for vehicles has to outpace the price increase for materials. We do not �nd evidence

for such a trend at all. This explanation faces an additional problem if the capital-labor combi-

nation to assemble di�erent sub-components, of equal value, di�ers. In that case the production

function depends on exactly which activities are outsourced and no stable material aggregate exists.

Without observing the actual material inputs, it is impossible to remedy this problem.

We adopt the �rst interpretation, quality upgrading with a constant amount of material

inputs per-vehicle. The trade press describes the trend to increased outsourcing as something

operating at the �rm level. Instead of receiving components from in-house suppliers, more is bought

from outside �rms. Both options have little impact on the activities carried out at the assembly

plant. If we compare the volatility in the material-sales ratio with the volatility for capital or labor

input, it is almost negligible, providing additional support for the assumption of constant material

input.8

8We use the following formulas to evaluate the volatility of the material-sales ratio over time:
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, and similarly for labor and capi-

tal. Using these measures we see that capital-sales is 6 times more volatile than material-sales. Labor-sales is 4 times

more volatile. In addition, the di�erence between material volatility across plants is hardly higher than the volatility
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We model the production function as Leontief, allowing no substitution between materials,

on one hand, and capital and labor, on the other hand. The functional form is motivated by industry

practice. For most components, there is hardly any scope for substitution. Engines, transmissions,

and electrical components are outsourced by all plants. Most other components, such as shock

dampeners, seats, wheels, etc., are also outsourced and simply installed at the assembly plant. The

�xed coeÆcient for material input is allowed to vary between technologies. Production for plant j

producing at time t with technology i is governed by the following relationship:

Qjt = min [�0i0M
�im
jt ; �Qjt e

�
q

ijt ] (5)

The �rst part of the function relates the output quantity to the volume of material inputs.

Because we do not observe material input directly, we link the value of materials to output using

a price index. The index captures price and quality upgrading of components and includes a

stochastic component. For example, automobile producers have the choice between more expensive,

but higher quality, disk brakes and cheaper drum brakes. During our sample period, manufacturers

substituted most drum brakes for disk brakes. The component cost per vehicle increased and it

is not captured by price de
ation because both brakes are di�erent goods. At the same time, the

amount of material input per-vehicle remained constant (four brakes per-vehicle) and assembly

time also did not change.

The price index (Pi) links the observed value of materials (M̂ ), measured in 1987 dollars,

to the unobserved amount of materials used (M):

M̂jt = PijtMjt

Pijt = e
pi0+�imt+�m

ijt :

�im is the average price increase for material inputs. �mi is a stochastic component that is unobserv-

able to the econometrician.9 The amount of materials is not observed, but we can obtain it from

the production function. If all inputs have a positive price, both parts in the Leontief function will

hold with equality. Taking logarithms, rearranging, and substitutingM gives the �rst equation we

estimate,

(4b) m̂jt = �i0 +
1

�im
qjt + �imt+ �mijt:

Small cap variables indicate the logarithm of a variable.

The second part in the production function indicates that measured output (Q) will di�er

from planned output ( �Q), because of the realization of a shock to production (�q). Planned output

is a function of capital, labor, shifts, and productivity. The �xed-coeÆcient technology for materials

makes it reasonable to assume that materials are determined after the realization of the production

shock (�q).10 We de�ne the per-shift production function as

�Qjt = S
�is
jt fi(

Ljt

Sjt
;Ke

�ikt+�
k

ijt)e�int+!j : (6)

over time for a given plant.
9It does not matter whether a plant observes �

m

i or not, because it has no control over the amount of materials

to use. Output is determined exogenously (at the �rm level) and material input is linked to output through a

constant-coeÆcients technology.
10It is straightforward to adjust the model making the choice of material input precede the production shock. The

only change to the estimation would be the introduction of a positive correlation between the errors in the production

and material equation.
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This incorporates Hicks-neutral productivity di�erences among plants (!j) and neutral productivity

growth (�in). Capital-biased productivity di�erences are captured by a plant-speci�c shock (�ki )

and a shift over time (�ik). A plant observes all four factors.

Output per-shift is a function of labor per-shift and eÆciency units of capital. The shape of

fi(:) determines the technological substitution possibility between capital and labor for technology

i. To obtain total production, we multiply with a scale factor for the amount of shifts a plant is

operated (S�isjt ). The �is coeÆcient can be smaller than one. For example, running more shifts can

reduces maintenance time, leading to more machine breakdown and lower production per-shift. It

can be larger than one if there are positive spillover e�ects between shifts. Examples are shared

overhead or reduction in start-up time.

Substituting the expression for planned output in the production function gives the second

equation we estimate,

(4a) qjt = �issjt + log fi(
Ljt
Sjt
; K̂ijt) + �int+ !j + �

q
ijt;

where K̂i are eÆciency units of capital (K̂i = Ke�ikt+�
k

i ). The equations (4b) and (4a) describe the

distribution of materials and output conditional on technology choice. All coeÆcients and the error

term are technology-speci�c. The only element unobserved to plants is the ex-post shock to output.

We control for !j, using plant dummies, and for �
k
i , using an expression derived from optimal input

choices (in the next section). We use the translog speci�cation for the labor-capital aggregate,

log fi = �i + �ill + �ikk̂i +
1
2
�ill

2 + 1
2
�ikk̂

2
i + �ilk l k̂i + �int+ !j + �

q
i ;

where l is the logarithm of labor per-shift.

4.2 Third decision: Choice of variable inputs

Most productivity studies using the translog production or cost function use Shepard's lemma to

derive the factor-share equations, to aid in identi�cation. We have the additional need to obtain an

expression for the shock to capital productivity in terms of observable variables. The introduction

of shifts as choice variable and the fact that plants choose labor and capital at a di�erent time,

makes it necessary to solve the cost minimization explicitly.

Every period a production plan is handed down from headquarters. Capital, output and

technology are not decision variables at this point. The plant chooses labor and shifts to satisfy

the production requirement and to minimize variable costs, which are two-fold. First, wages are

proportional to the number of shifts and the average number of hours worked on a shift. Second,

there are �xed and variable costs associated with operating a shift. The existence of labor unions

complicates the tradeo� between labor and shifts the plant makes. Unionized plants save less when

they reduce labor input. Labor contracts negotiated in this industry specify that a percentage of

the normal wage is paid even when plants are idled. Because plants only take the variable portion

of the wage into account, we multiply the observed wage by a factor that lies between zero and one

(Æ). For non-unionized plants, this fraction is normalized to be one.

The costs associated with operating a shift are not observed directly. We estimate them

with a �xed component (�i) and a component proportional to capital (�i).
11 We observe many

11There is no unique solution if returns to scale, for the per-shift production function, are equal to �is. With excess
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plants idling the capital stock for part of the year. This indicates a positive marginal cost of

operating the capital stock. Reasons for this can be complementary inputs (labor and energy),

depreciation in-use, or maintenance cost. Both components are equal across plants, but possibly

di�erent for each technology.

A plant solves the following cost minimization problem:

min
fL;Sg

S � (w Æ
L

S
+ �iK + �i) (7)

s.t. Q = S�is fi(
L
S ;Ke

�ikt+�
k

i )e�int+!j+�
q

i

E(Q) � �Q

Æ = 1 if plant is not unionized

Æ 2 [0; 1] if plant is unionized

K � �K:

In the objective function, w is the observed wage rate and Æ is the fraction of the wage that is not

paid when a plant is idled. L
S
is the average hours worked per-shift by all employees. K, the capital

stock, is �xed at this point. S is the number of shifts the plant is operated over the entire period.

Only the relevant part of the production function is repeated.

This model allows for the large under-utilization of capital often noted in the automobile

assembly industry. If capital has a positive operating cost (�i > 0), it can be advantageous to idle

the plant some shifts. This is especially relevant if output requirements change after the capital

stock is �xed, but before variable inputs are chosen. It also applies if a plant chooses variable

inputs more frequently than investment. A manufacturer can employ more workers on each shift

and run fewer of them to save on capital depreciation, maintenance, and energy. This can only be

accomplished by running the assembly line at a higher jobs-per-minute (JPM) rate, made possible

by the increased labor input. Since reported capacity numbers for the industry are calculated as

potential output, assuming ten shifts per-week and the initially reported JPM rate, this substitution

behavior will show up as lowered capacity utilization. The tradeo� between labor and capital is

determined by the operating cost per-shift (�i), the returns to shifts (�is), and the elasticity of

substitution between capital and labor. All three factors are identi�ed separately in our model.

To obtain an equation to estimate, we solve the minimization problem and rework the

�rst-order conditions. The Lagrangian we minimize is

L(L; S) = w Æ L+ (�i �K + �i)S + �[ �Q� S�isfi(
L
S
;Ke�ikt+�

k

i )e�int+!j ];

where L and S are the decision variables. The �xed cost per-shift and scarcity of resources will

guarantee that K = �K and E(Q) = �Q.12 The �rst-order conditions are

w Æ = �e�int+!jS�is�1f 0iL=S (8)

�i �K + �i = �e�int+!jS�is�1(�isfi � f 0iL=S
L

S
): (9)

capacity, a plant can produce the same output in t shifts, using L hours per shift, or using all tL hours in one shift

and employing t times as much capital. Introducing a �xed cost per-shift guarantees that a plant will always use the

entire capital stock if it operates a shift.
12The only variable in the problem a plant does not observe at this stage is the ex-post shock to production, �

q

i
.
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Dividing the two equations and rearranging gives

w Æ L

w Æ L+ S(�i �K + �i)| {z }
�i

=
1

�is

@ log fi(
L
S
; K̂)

@ log(LS )
: (10)

The expression on the left is the labor share of variable cost. The variable cost share is not directly

observable and we have to estimate the parameters �i, �i, and Æ. Equation (10) indicates that

the optimal labor-share ratio does not depend on the plant-speci�c productivity or the shock to

production.

Using the translog speci�cation for fi we can write

(3)
wÆL

S

wÆL
S
+ �i �K + �i

� �il log
L
S = �il + �ilk(k + �ikt+ �ki ):

The dependent variable, L
S , is a nonlinear function of the disturbance, �ki . We use this identity

to substitute for �ki in the production function, which allows for consistent estimation of equation

(4a). In addition, we estimate equation (3) directly, to aid in identi�cation.

4.3 Second decision: Investment

We brie
y introduce the assumptions made to estimate the production function and derive some

interesting theoretical results. A plant decides investment taking output and technology as ex-

ogenous and anticipating optimal choices of labor and shifts. If investment can be negative and

capital-biased technological change is disembodied, it is not necessary to consider later years.13

The manufacturer faces the following optimization problem

min
fIg

rI +E[G(w;K; �Q)] (11)

s.t. Q = S�is fi(
L
S
;Ke�ikt+�

k

i )e�int+!j+�
q

i

E(Q) � �Q

G = wÆL� + (�iK + �i)S
�

Kt = (1� d)Kt�1 + It;

where r is the user cost of capital and G is the variable cost function. L� and S� are the optimal

values for labor and shifts derived from the variable input optimization. Both are functions of

capital as well.

The Lagrangian to minimize is

L(I) = rI + E
h
G(w; (1 � d)Kt�1 + I; �Q)

+�0f �Q� S�isfi(
L
S
; e�ikt+�

k

i [(1 � d)Kt�1 + I])e�int+!j+�
q

i g
i
;

which gives the �rst-order condition for investment

r +E[
@G�(K)

@K
] = peE[S�isf 0iK]e

�int+!j : (12)

13Disinvestment is not a rare occurrence in this industry. Nearly 55% of the observations in the sample sell o� used

equipment or buildings. Gross investment is negative in 3.5% of the cases.
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The �rst term on the left-hand side is the usual user cost of capital. This captures time-depreciation,

change in valuation of the asset and interest cost. The second term is the marginal in-use cost for

capital. It includes the cost of operating shifts and takes the change in optimal labor and shifts into

account. On the right-hand side we use two simpli�cations. The shadow cost for the production

equation is the value of one unit of output. We substitute the expected price for the Lagrange

multiplier because the output level, and hence the price, is exogenous to the plant. We also

substituted E(�
q
i ) = 0. This error term is independent of all other errors and the decisions of the

plant.

Because labor, shifts, and the marginal product of capital depend on �ki in a nonlinear way,

the �rst-order condition does not simplify further. A plant will choose investment in order to satisfy

(2)
E[(r +

@G�(K)
@K

)K]

pe �Q
= E

h @ log fi
@ logK

i
:

On the left is the expected total cost of capital as a percentage of planned sales over the entire year.

On the right is the logarithm of the expected marginal product of capital. Compared to the usual

capital share equation, capital cost is now the sum of a variable cost, which depends on capacity

utilization, and a �xed (user) cost, which is sunk after capital is installed.

Estimation of equation (2) would be possible if fi takes the Cobb-Douglas form. In that

case the marginal product of capital is a constant and it greatly simpli�es the expected variable

cost. A major disadvantage would be that it �xes the elasticity of substitution between capital and

labor to unity. It would also make it impossible to identify the factor-bias in productivity growth.

Using the translog function instead, we do not estimate the capital demand and forgo the ability

to separate the �xed and variable components of capital cost (r and �). The appendix derives

three interesting properties of the investment decision. K is a function of !j and we account for

it by using plant-�xed e�ects in the estimation of the production relation. It also depends on the

parameters of the distribution of �ki , but not on the actual realizations.

4.4 First decision: Choice of technology

We do not observe the outcome of the technology choice directly. In order to estimate the parame-

ters in the production function, we need to control for it. The previously derived input decisions are

all conditional on the technology choice. If we can predict the probability that a plant is producing

with either technology, we obtain the unconditional distribution for the endogenous variables.

We have to make speci�c assumptions to determine the probability a plant is producing

with each technology. Beard et al. (1991) take an agnostic position, using an exogenous switching

model. The error term in their cost function is distributed with a mixture of normal densities.

They estimate the coeÆcients in two cost functions and a parameter capturing the incidence of

each technology in the sample. The bimodal pattern in Figure 3 is consistent with the existence

of two technologies. In addition, the bottom panels indicate that plants can switch technologies,

which we take into account as well.

We assume that the choice of technology is made at the �rm level. The plant manager has

to ful�ll a production requirement handed down from headquarters. Similarly, we assume that the

technology used in the plant is decided before the production year starts, at the �rm level. It is

the outcome of a net present value comparison between the two technologies. The �rm will choose
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the technology that gives it the highest discounted pro�ts, taking expectations of future exogenous

variables and switching costs into account. Building an empirical model that explicitly makes this

net present value comparison is too complicated. A myriad of e�ects enter this decision. Strategic

considerations, pricing of a durable good, and the joint decision for many plants readily come to

mind. We would also have to make speci�c assumptions about the expectations of all exogenous

variables and the optimal response functions for all endogenous variables.

Instead, we take a reduced-form approach to control for the technology decision and assume

the probability a �rm adopts the new technology is a function of observable variables. Crucially,

we assume that the technology decision is exogenous to all error terms introduced earlier. This is

justi�able, because the technology choice is taken before the start of production. The probability

that a plant will enter the sample with the older, traditional technology is given by

(10)  jt =
1

1 + exp(Wjt�)
:

Variables in W capture the relative pro�tability of each technology. The evolution of the two

technologies, experience working with them, and the market segment a plant produces for, are

likely to be important determinants. For example, it is argued that lean production is better suited

to produce for volatile markets or at a lower scale. The trend towards more cars per-household has

led to a larger demand for speciality or niche vehicles, favoring lean technology.

A �rm makes the �rst technology choice before we observe the plant in our sample. In

addition, at the start of each year, it has the option of switching technologies. The data spans 27

years allowing 227 possible paths for technology. It is possible to estimate a model that allows plants

to shift freely between technologies using the EM algorithm. This necessitates �xing the transition

probabilities between technologies to a constant. We opted to be less 
exible on the direction of

change and more 
exible on the transition probabilities, making them vary over time and across

plants. We model lean production as an absorbing state, which reduces the number of possible paths

for technology to 28. Plants built before the lean technology was available (or actually considered

by the �rm) can end up with the \wrong" technology for their characteristics. Only these plants

will opt to switch and incur switching costs. Using this assumption, we can model the transition

probability as a parametric function of observable variables. It also necessitates constructing the

likelihood for the entire path of the endogenous variables, instead of year by year.

The transition probabilities are illustrated in the matrix in Table 2. Once a plant adopts

the lean technology it is guaranteed to continue with it. Variables in Z determine the probability

Table 2: Transition probabilities for technology

(1)

time t+ 1

T L

T pjt =
1

1 + exp(Zjt
)
1� pjt =

exp(Zjt
)

1 + exp(Zjt
)

time t

L 0 1

of a plant �nding it more bene�cial to produce with the lean technology rather than sticking with
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the traditional one. The same demand variables as in W will in
uence this transition. In addition,

we use a dummy for changeover years to capture switching costs. When a substantially modi�ed

model is introduced, a plant has to adjust a large part of the assembly line. This is arguably a good

time to make the technology switch as well, because much of the capital stock has to be replaced

anyway.

5 Estimation

5.1 Likelihood function

Equations (4b), (4a) and (3) describe the distribution of the endogenous variables |material,

output, and the labor-shift ratio| conditional on technology. The probability a plant produces

with each technology was derived separately. The vector y = [m̂; q; L
S
]0 contains the endogenous

variables of the system. It depends on two vectors of disturbances �i = [�mi ; �
q
i ; �

k
i ]
0, the parameter

vectors �i (i = T;L), and the matrix X of all exogenous variables.

We assume that the three errors are independent and normally distributed. Given the

nonlinear relation between the labor-shift ration and �ki , we need the Jacobian for the transformation

of variables,

@�k

@L=S
= (LS )

�1(�i + �2i � �il): (13)

The conditions for convexity of the production function also guarantee that the relationship between

�ki and L
S is monotone. �i represents the share of labor in the variable cost, derived earlier. It is

a function of observed variables and technology-speci�c parameters. The density of the yjt-vector

conditional on technology i becomes

hi(yjt) =
1

sim
�(
m̂jt � gm(Xjt; �i)

sim
)�

1

siq
�(
qjt � gq(Xjt; �i)

siq
)

�
���(LjtSjt

)�1(�ijt + �2ijt � �il)j
1

sik
�(
gi(

Ljt
Sjt

)� gl(Xjt; �i)

sik
); i = T;L

where �(:) is the standard normal density. The functional forms for the functions gm, gq, gl, gT , and

gL are given by equations (4b), (4a), and (3). We make the further assumption that, conditional

on the technology choice, errors are uncorrelated over time. The density of yj for the entire sample

becomes14

H(yij1:::y
i0

jT ) = hi(yj1):::hi0(yjT ): (14)

These densities cannot be estimated directly, if we do not observe the technology choice

plants make. For each sequence (yj1; yj2; :::; yjT ) we sum over all possible technology paths this can

represent. For example, the probability of the sequence (yTj1; y
T
j2; y

L
j3; :::; y

L
jT ) occurring is  j1 pj1 (1�

pj2). The plant started with the traditional production technology, stuck with it after the �rst year,

and switched to lean after the second year. The probability for a sequence yj |for a plant present

in the sample at time 1 and exiting at time T| is

14We write y

i

jt to denote the distribution of yjt conditional on producing with technology i in year t.
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L(yj1; yj2; :::; yjT ) = (15)

(1�  j1) H(yLj1; y
L
j2; :::; y

L
jT )

+  j1(1� pj1) H(yTj1; y
L
j2; :::; y

L
jT )

+  j1pj1(1� pj2) H(yTj1; y
T
j2; y

L
j3; :::; y

L
jT )

+ :::

+  j1pj1:::(1 � pjT�1) H(yTj1; y
T
j2; :::; y

T
jT�1; y

L
jT )

+  j1pj1:::pjT�1 H(yTj1; y
T
j2; :::; y

T
jT�1; y

T
jT ):

 j1 is the probability a plant enters the sample with the traditional technology and pjt is the

probability a plant remains with the traditional technology in period t + 1, given that it had this

technology in period t. The starting probability is a function of variables W and the transition

probability depends on variables Z. Substituting the previous expressions for H(:) and hi(:) and

multiplying over all plants generates the full likelihood function.

5.2 Results

We estimate equations (4b), (4a), and (3) using the likelihood function in (15). This controls for

heterogeneity in technology by jointly estimating the starting and switching probability with the

parameters in both production functions. Endogeneity of productivity is accounted for by including

plant-�xed e�ects (not reported) and substituting �ki in the production function using the labor-shift

equation. All coeÆcients are estimated jointly and we impose cross-equation restrictions. Results

are in Table 3.

The set of coeÆcients in the �rst column represents the traditional technology, with standard

errors in the second column. The set of coeÆcients in the third column represents the di�erence

between the parameters for the two technologies. The di�erences are estimated directly and their

standard errors are reported in the fourth column. The coeÆcients for the lean |absorbing|

technology are at the far right, in the �fth column. They are not estimated directly, but obtained

by summing the coeÆcients in the �rst and third column.

The top panel contains the linear and quadratic input coeÆcients, the parameter for the

returns to shifts, Hicks-neutral and capital-biased productivity growth, and the estimated standard

deviation for the shock to production. Most of the standard errors of the di�erence terms (fourth

column) are surprisingly small. This indicates that the two technologies are estimated to be signi�-

cantly di�erent. The shape of the estimated production functions is interpreted in the next section.

We also compare the technologies with the results obtained without controlling for heterogeneity

in technology.

Both productivity parameters and the di�erences are estimated rather precisely and signif-

icantly di�erent from zero. The traditional technology is associated with a higher rate of Hicks-

neutral productivity growth. The lean technology, on the other hand, experiences a very high rate

of capital-biased productivity growth, but Hicks-neutral productivity growth is slightly negative.

In section 6 we discuss the importance of these estimates for the industry-wide productivity growth.

The second panel contains the coeÆcients in the material equation. Although there are no

cross-equation restrictions, we estimate it jointly with the other equations, because the technology
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Table 3: Estimation results for the three equations and technology choice.

traditional di�erence lean

technology technology

�̂T (s.e.) �̂L � �̂T (s.e.) �̂L
Production function:

shifts �is 0.9684 (.004) 0.1334 (.034) 1.1017

labor �il 0.8222 (.023) 0.0224 (.023) 0.8447

capital �ik 0.1364 (.039) -0.0325 (.021) 0.1039

labor squared �il -0.0148 (.037) 0.0931 (.037) 0.0783

capital squared �ik 0.0268 (.012) -0.0204 (.012) 0.0065

labor � capital �ilk 0.1483 (.019) -0.1262 (.019) 0.0221

capital-biased PG �ik 0.0706 (.019) 0.2533 (.036) 0.3239

Hicks-neutral PG �in 0.0176 (.005) -0.0269 (.007) -0.0093

standard deviation siq 0.2353 (.009) 0.3132 (.097) 0.5485

Materials equation:

constant term �i0 3.6582 (.270) 0.0003 (.313) 3.6586

output 1
�im

0.8571 (.022) 0.0099 (.026) 0.8670

quality upgrading �im 0.0210 (.002) -0.0075 (.003) 0.0135

standard deviation sim 0.2231 (.008) 0.2257 (.008) 0.4488

Labor-shifts equation:

capital cost �i 2.9E-6 (5.5E-6) -2.9E-6 (3.5E-4) 1.4E-11

�xed cost per-shift �i 67.483 (11.4) -10.021 (11.3) 57.462

union dummy Æ 0.9745 (.123) X X 0.9745

standard deviation siq 0.0644 (.008) -0.0340 (.005) 0.0304

Technology Choice:

Starting probability: �

constant term -2.0345 (3.317)

dummy for cars 0.6853 (2.692)

dummy for trucks 1.1867 (2.777)

Japanese dummy 1.0404 (3.742)

time 0.0911 (0.079)

Transition probability: 


constant term -1.9412 (0.755)

dummy for cars -0.1328 (0.651)

dummy for trucks -0.7739 (1.070)

changeover dummy 0.4080 (1.346)

time -0.0383 (0.057)

number of observations 1358

likelihood 1890.8
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choice is the same. Quality upgrading through improved components is estimated to be slightly

lower for the lean technology. This can be an indication that most quality upgrading was realized

before the lean technology became important in the sample. The parameter on output is indistin-

guishable between technologies. It indicates that an increase in output is accompanied by a less

than proportional increase in material input.

The cost-parameters and standard deviation for the labor-shift equation are in the third

panel. The parameters determining the marginal product of labor are reported earlier, in the �rst

panel. The dummy for labor unions is assumed constant across technologies. It is estimated close

to one, which indicates that unionized plants face almost the same tradeo� between labor and shifts

as non-unionized plants. Both the �xed and variable costs related to shifts are estimated to be

lower for the lean technology. The variable component is not signi�cantly di�erent from zero for

lean producers.

In the bottom panel are the coeÆcients governing the technology choice. Looking at the

starting probability �rst, the results indicate that plants gradually become more likely to start out

with the lean technology. The coeÆcient on time is not estimated signi�cantly di�erent from zero,

but the sign is positive, as expected. Plants that produce only trucks, and to a lesser degree plants

producing only cars, prefer the lean technology, although the coeÆcients are not estimated very

precisely. Surprisingly, the new technology seems to be less favored by plants that produce both

trucks and automobiles. The average starting probability for the conventional technology is 0.81

at the beginning of the sample period and 0.23 at the end.

Figure 5: Probability that a new plant starts out with the traditional technology.
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Figure 5 plots the starting probability for di�erent types of plants. The three dummy

variables in Z |only-cars, only-trucks, Japanese ownership| de�ne six types of plants, all of

which face a di�erent probability for the traditional technology in each year. Figure 5 only includes

the schedule for four of the six types to make the graph better readable. The positive coeÆcient

on time makes the probability for the traditional technology decline over the years. The positive
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coeÆcient estimate on Japanese ownership shifts the schedule for each product down if the plant

is owned by a Japanese �rm, compared to domestically owned plants. The �rst Japanese plants

entered the sample in 1982.15

Turning to the transition probability, the negative coeÆcient on the time variable indicates

that the probability for a traditional plant switching to the lean technology declines over the

sample period. During a year in which a plant has a major changeover, it is more likely to adopt

the new technology. We found earlier that plants producing both cars and trucks had the highest

probability to start out with the traditional technology. They also have the highest probability to

make the transition to lean technology. Figure 6 traces the inverse of the transition probability,

the probability that a traditional plant remains with the traditional technology, in regular and

changeover years for the di�erent types of plants. The average probability over the entire sample

period is 0.93. This ranges from a high of 0.98 for a truck producer if 1996 was a regular year,

to a low of .82 for a car and truck producer if 1963 was a changeover year. These statistics can

be interpreted as complements of a hazard rate. The average transition probability suggests that

over a 10 year period half of the mass producers would switch to the lean technology. In 1963 it

would only take three (and a half) changeover years to achieve the same percentage of mixed-plants

switching. A small decrease in the non-transition probability has large e�ects.

Figure 6: Probability a traditional plants does not switch to the lean technology.
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5.3 Interpretation

We draw two conclusions about technology from the estimation results. First, the two technologies

are estimated to be rather distinct. The results are consistent with an interpretation of the tradi-

tional technology as mass production and the more recent technology as lean production. Secondly,

the proportion of plants producing with the traditional technology declines signi�cantly over the

15The three joint ventures between American and Japanese producers, NUMMI, AutoAlliance, and Diamond-Star,

are categorized as Japanese plants

24



sample period. This is caused by a combination of entry by new plants, which are more likely to

be lean, and technology switching by existing plants.

We do �nd evidence for the existence of two distinct technologies in our sample. The

nature of their di�erence corresponds largely to the mass-lean distinction many industry observers

have made. Interpretation of the parameters in the production function directly is complicated

by the quadratic terms. We evaluate several statistics at the sample mean, which is calculated

separately for each technology. Plants are weighted by the imputed probability for each technology

(see below). Table 4 contains estimates for factor shares, returns to scale, productivity growth,

and elasticities of substitution. The �rst two columns contain the results for the two estimated

technologies, traditional and lean. For comparison, the far right column presents the same statistics

for a translog production function, estimated on the full sample. The translog estimation uses the

same output and input measures and includes plant-�xed e�ects as well.16

Table 4: Comparing the two technologies with simple translog results

traditional lean translog estimation

technology technology for the entire sample

Average factor shares:

capital share 0.144 0.104 0.349

labor share 0.854 0.764 0.796

labor share in variable cost 0.882 0.695 X

Returns to scale (L & K) 0.998 0.868 1.145

Returns to shifts 0.968 1.102 X

Productivity growth:

Hicks-neutral 0.018 -0.009 0.004

capital-biased 0.071 0.324 0.007

labor-biased X X -0.006

Elasticity of substitution (L-K) 1.038 1.156 0.334

Demand elasticities:

�LL -0.154 -0.884 -0.117

�KK -0.861 -0.977 -0.266

�LK 0.149 0.120 0.117

�KL 0.886 0.883 0.265

The �rst two rows contain the labor and capital share evaluated at the mean for each

technology. The labor share in variable cost has an additional correction for the returns to shifts.

The correct formula and interpretation is given by equation (10). The traditional technology puts

more weight on both inputs and produces with constant returns to scale. Returns to shifts are

estimated to be constant as well. The lean technology is estimated to have decreasing returns to

scale for capital and labor input, but increasing returns with respect to shifts. The lower variable

cost of operating a shift (�L was estimated very low) and the increasing returns to shifts both

cause lean producers to run more shifts, ceteris paribus. Surprisingly, in Figure 3 we found the lean

technology to display a higher capital-labor ratio than traditional producers. The relative share of

16Failure to correct for capacity utilization lead invariably to a negative capital share. We approximate the capital

services a plant derives from the observed capital stock, by multiplying the stock with an index of capacity utilization.
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capital and labor are estimated rather similar for both technologies, but the higher returns to shifts

would lead lean producers to run more shifts and have a lower capital stock per-hour worked (hours

worked by employees on di�erent shifts can utilize the same capital stock). This phenomenon can

be partly explained by the use of book values for capital. Lean plants are on average more recent

and the capital stock has depreciated less.

Hicks-neutral and factor biased productivity estimates di�er considerably between the two

technologies. Labor-biased productivity growth is restricted to zero, but capital-biased productivity

growth is estimated directly. The high rate of capital-biased productivity growth for lean producers

is remarkable. Lean production is often associated with 
exible machinery. The 
exible equipment

allows many Japanese plants to produce rather distinct models on the same assembly line. It is

also re
ected in the lower changeover times for the assembly line between models for Japanese

producers. As predicted in Figure 4, the Hicks-neutral productivity growth for the usual translog

estimation, with all plants pooled, is estimated between productivity growth for lean and traditional

producers. For the translog estimation the factor-biased productivity growth rates do not have the

same structural interpretation. The interaction between inputs will a�ect the productivity estimates

as well. In all three columns the same conclusion surfaces: productivity growth is labor-saving.

The bottom panel of Table 4 contains estimates for the elasticity of substitution between

capital and labor. The lean technology displays a slightly higher elasticity of substitution and

the statistic exceeds one for both technologies. Comparing the results with the translog results

indicates that failure to model capacity utilization explicitly leads to a very low elasticity estimate.

The same �nding is true for the factor-demand elasticities. The lean technology is estimated to

be more 
exible than the traditional technology. Labor demand, especially, is estimated to be

signi�cantly more elastic. Both technologies are estimated to be more price responsive than the

results for the simple translog estimation.

The second conclusion we draw from the analysis is that the industry as a whole has almost

completed the transition from traditional to lean production. We update the starting probability for

the traditional technology for the 78 plants in the sample using the relevant transition probability

for each plant. This gives an estimate for the probability a plant is producing with the traditional

technology in any given year. Figure 7 shows the evolution of this probability over time. The

proportion of the sample producing with the traditional technology clearly declines, but in any

given year there is considerable variation. While the probability for the lean technology was very

small for all plants in 1963, the reverse is true in 1996.

This �nding is caused by two trends. The starting probabilities in Figure 5 already indicated

that new plants became much more likely to use the lean technology. At the end of the sample

period, every plant built has a lower than 40% probability for the traditional technology, with the

probability signi�cantly lower for some types of plants. Out of 49 plants in the sample in 1963 only

half remain in 1996. The average entry year for the other half of the plants present at the end of

the sample is 1983. In that year the average starting probability for the traditional technology was

already below 42%.

The second trend leading to the disappearance of the traditional technology is technology

switching by existing plants. For example, car-plants faced a switching probability of around 0.10

for the �rst part of the sample, even in regular production years. This translates into half of

the plants making the technology switch in less than seven years. In addition, switching is more
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Figure 7: Probability for traditional technology in the sample

(Each circle represents the imputed probability for one plant-year)
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prevalent in changeover years. These changeover years are more common earlier in the sample.

The average year for all observations in the data set is 1983, while the average year for a signi�cant

model changeover is 1980. At the same time, it is intuitive that the non-transition probability tends

to one towards the end of the sample. Gradually less plants are built with the \wrong" technology,

necessitating a costly technology switch. This makes the probability for traditional technology for

any given plant asymptote to a value above zero, but Figure 7 indicates that this value is rather

low for most plants.

Figure 3 provided additional evidence for the substantial change in sample composition.

Without identifying individual plants as lean or traditional, the relative weight on the two modes

of the distribution shifted considerably from the beginning of the sample period to the end. In

particular, the bottom panels isolate the e�ect of switching, by focussing only on plants that

remained in the sample throughout. Both the changing distribution for the capital-labor ratio and

the estimated transition probabilities indicate that switching is important.

6 Conclusions about productivity

Finally, we can investigate what we can learn from this about productivity growth in the indus-

try. The estimated productivity growth rates are actual shifts of the production functions, with the

function for each technology shifting independently. We �nd that the traditional technology experi-

ences a higher rate of Hicks-neutral productivity growth, 1.8% versus -0.9% for the lean technology.

The lean technology, on the other hand, has a higher capital-biased productivity growth rate, 32.4%

versus 7.1%. The capital-biased results are not directly comparable to the usual estimates obtained

from a translog cost or production function. The growth rates we estimate only a�ect total output

or costs in proportion to the share of capital and through the interaction between capital and la-

bor. The interpretation is the same though: productivity growth is labor-saving. Because the real

27



price of labor has a strong upward trend over the sample period, we could expect this �nding. It

is intuitive to �nd that the lean technology, which became more popular over the sample period,

experiences the higher rate of labor-saving growth.

We can use the estimated technologies to analyze the evolution of productivity in the

industry. Figure 1 suggests a break in the trend growth rate for labor productivity in the early 1980s,

with productivity growth accelerating strongly. Rather than viewing this as an exogenous shift, we

calculate the impact of trends in fundamentals on the industry-wide productivity growth we observe.

The �rst decomposition divides average labor productivity growth in the industry into contributions

of lean producers, traditional producers, and a switching e�ect. Relocation of resources between

plants and entry and exit play an important role as well. The second decomposition divides

the growth in labor productivity for each technology into the contribution of several e�ects we

estimated, such as total factor productivity growth, returns to scale, and others.

Following Baily et al. (1992) we decompose labor productivity growth for the industry as

follows

LPGt =

j;k;lX
n

(�ntLPnt � �nt�1LPnt�1)

=

stayX

j

�jt�1(LPjt � LPjt�1) +

stayX

j

(�jt � �jt�1)LPtj +

enterX

k

�ktLPkt �
exitX

l

�lt�1LPlt�1

We use LP = log(QL ) for the logarithm of the level of labor productivity. The entire expression is

the average labor productivity growth, with each plant weighted by its share of the capital stock in

the industry. We chose these weights to investigate how capital is reallocated over time.17 The �rst

term measures the contribution of labor productivity growth at the plant-level, only calculated for

plants that stay in the sample from year t� 1 to year t. The second term measures the relocation

e�ect, also for plants that stayed in the sample. If capital is relocated to plants with above average

labor productivity, this term will be positive. The third and fourth term measure the contribution

of plants entering and exiting the sample. If new plants are on average more productive than exiting

plants, the sum of the last two terms will be positive.

For each plant we decompose the level and growth of labor productivity into the contribution

of the traditional and lean technology:

LPGjt = 'jtLPGjt| {z }
traditional

+ (1� 'jt�1)LPGjt| {z }
lean

+ ('jt�1 � 'jt)LPGjt| {z }
switching

(16)

LPnt = 'ntLPnt| {z }
traditional

+ (1� 'nt)LPnt| {z }
lean

; n = j; k; l (17)

where 'jt is the probability for the traditional technology for plant j in year t. The �rst term in (16)

captures the contribution to the traditional technology. It multiplies the labor productivity growth

with the probability of being traditional in year t. Given that the lean technology is an absorbing

state, these plants were also traditional in year t�1. The second term measures labor productivity

growth times the probability the plant was lean in both years. The third term multiplies the

productivity growth with the probability a plant made the technology switch at the start of year

17For the decomposition, it has to hold that
P

j
�jt +

P
k
�kt +

P
l
�lt = 1.
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t. Equation (17) similarly decomposes the level of labor productivity into a traditional and lean

component.

Substituting equations (16) and (17) in the �rst decomposition gives nine terms. We sum

the contribution of entry and exit for each technology to calculate a net entry e�ect. Table 5

contains the results for all seven terms, averaged over all years. Because plants di�er in their

Table 5: Decomposition of industry-wide labor productivity growth (average 1963-96)

lean plants traditional plants switching

contribution to LPG 1.14% 0.20% -0.02%

composition 0.06% -1.02%

net entry 0.91% -0.49%

LPG (full sample) 0.79%

labor productivity growth, labor productivity level, and the probability for each technology, we

�nd signi�cantly di�erent contributions for both technologies. The lean technology generates most

of the industry-wide productivity growth. Plants using this technology increase productivity faster,

and new plants are more likely to be lean and more productive than exiting plants. The relocation

of capital between plants that stayed in the sample generates a slightly positive contribution for

the lean technology, while the mass technology plants relocate inputs to plants with below average

productivity. The direct e�ect of switching is minor. The change in probability for each technology

in any given year is small for most plants. In addition, lack of experience is likely to make the

newly con�gured plant operate with lower productivity for some time immediately after a switch

in technology.

The second decomposition divides the growth in labor productivity for each technology into

the contribution of several fundamental e�ects that we estimated. We approximate the production

function using a Cobb-Douglas function to aggregate labor and capital,

Q = S�s
h�

L
S

��l�
Ke�kt

��ki
e�nt:

Taking �rst di�erences of the logarithm of this function, deducting growth in labor input, and

substituting the coeÆcient estimates, we write labor productivity growth for each plant as

LPG = ( _q � _l) = �̂n|{z}
TFPG

+ �̂k �̂k| {z }
capital-biased PG

+ �̂k( _k � _l + _s)| {z }
capital-labor growth

(18)

+ (�̂l + �̂k � 1)(_l � _s)| {z }
returns to scale

+ (�̂s � 1) _s| {z }
returns to shifts

+ �;

where _x denotes the year on year growth rate for x. The last term captures the change in errors

between years and the approximation error caused by the use of the Cobb-Douglas approximation.

We sum each of the �ve terms over all plants, using the probability for each technology as

weight. All plant-years receive equal weight, as they did in the estimation. There is no guarantee

that the weighted errors sum to zero. To make the decomposition add up, we use the relative

importance of the Hicks-neutral and capital-biased productivity growth estimates to divide the
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part of labor productivity growth not accounted for by the other three terms. Results for both

technologies are in Table 6.

Table 6: Decomposition of labor productivity growth into fundamentals for each technology

lean technology traditional technology

growth contribution growth contribution

LPG 1.46% (100%) 1.11% (100%)

TFPG -0.29% (-20%) 0.69% (62%)

capital-biased PG 1.04% (71%) 0.39% (36%)

growth in K
L=S

0.58% (39%) -0.01% (-1%)

returns to scale 0.08% (6%) 0.05% (4%)

returns to shifts 0.05% (4%) -0.01% (-1%)

For the traditional technology, almost all of the growth in labor productivity is accounted

for by the estimated total factor and capital-biased productivity growth. Returns to scale are de-

creasing, but it generates a marginally positive contribution, because the average scale of operation

decreased. For the lean technology most of the productivity growth comes through capital-biased

productivity growth, unsurprisingly, given the high estimate for this coeÆcient. In contrast with

the traditional technology, there is also a sizable contribution from the increase in capital-labor ra-

tio (for labor per-shift) as well. The returns to scale e�ect has the same origin as for the traditional

technology, but is even more surprising given the sizable diseconomies of scale. Many lean plants

have become smaller over time. This is mostly driven by the proliferation of models. This trend

in demand added to the popularity of the lean technology, since it necessitates smaller production

runs. At the same time, some plants now produce more than one model on the same assembly line,

which again favors the more 
exible, lean technology.

7 Final Conclusions

We estimated productivity growth using a structural model of production to account for unobserv-

able heterogeneity in technology and productivity. The estimated technologies are consistent with

the often made distinction between lean and mass production in this industry. The more recent

(lean) technology is associated with higher capital-biased, and lower Hicks-neutral, productivity

growth. We also �nd that the mass production technology is disappearing from the industry. This

is caused by the entry of new plants, predominantly choosing the new technology, and technology

switching by existing plants.

Using the estimation results, we investigate the trends underlying the large increase in

aggregate labor productivity growth for the industry, since the early 1980s. Plant-level growth,

attributed to lean producers, and the net entry of plants with the new technology, are the two

most important trends. The plant-level labor productivity growth can be further decomposed.

We �nd capital-biased productivity growth and an increase in the capital-labor ratio particularly

important. Surprisingly, diseconomies of scale had a positive contribution as well, because plants

decreased their scale of operation over the sample period.
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Appendix

Property 1 A higher variable cost for capital (�) has an ambiguous e�ect on investment, but it

lowers capacity utilization in almost all cases.

[Need to add]

Property 2 High elasticity of substitution between capital and labor increases investment

[Need to add]

Property 3 Variation in output over sub-periods increases investment

If the variable inputs are chosen more frequently than investment, the equation for the optimal

capital demand becomes

(
P

� E(
@G�(K)
@K ) + r)K

pe
P

�
�Q�

=
X
�

Q�P
� Q�

E
� @ log fi
@ logK

�
;

where � is the index for sub-periods. On the right-hand side, the capital productivity in each period

is weighted by the share of output produced in that period. Because the capital stock is �xed for

the entire year, labor input will be higher in periods with high output, which increases capital

productivity. If output is spread unevenly capital productivity will be weighted more heavily when

it is higher. This increases the right-hand side and therefore the optimal capital stock.
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